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ABSTRACT
In a recent paper Sebastian and Gorenflo (2016) introduced Type 2 Generalized
Laplacian (T2GL) law and developed the associated AR(1) model after showing that
T2GL law belongs to class-L. Here we show that T2GL law is normally attracted to a
stable law and it is geometrically infinitely divisible. In fact we prove the results for a
T2GL family that contains the T2GL law. We point out the corresponding integer-
valued T2GL family. Finally, we also clarify a claim in Sebastian and Gorenflo
(2016).
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1. Introduction

The T2GL(α) random variable (r.v.) X is described as X = X1 −X2 where X1 and
X2 are independent Mittag-Leffler(α) (ML(α)) r.v.s with Laplace Transform (LT)

1

1 + sα
, α ∈ (0, 1].

Historically, the ML distribution, following Pillai (1990), was first described by Ko-
valenko (1965). The characteristic function (CF) of T2GL(α) law is

1

1 + 2 cos(πα2 ) |t|α + |t|2α
, α ∈ (0, 1].

Sebastian and Gorenflo (2016), who introduced T2GL law, prove that it belongs
to class-L (or is self-decomposable). They then develop the corresponding first order
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auto-regressive (AR(1)) model and study it in some detail.

In the next section we show that T2GL law belongs to the domain of normal
attraction of a stable law and is geometrically infinitely divisible (GID). Actually
we prove these properties for a family of laws that contains T2GL. We point out
the corresponding family of integer-valued T2GL laws that share these properties.
Finally, we clarify a claim in Sebastian and Gorenflo (2016).

Several authors have discussed applications of GID laws in time series modelling,
p-thinning of renewal processes and random walks, see Sandhya et al. (2018) and
the references therein. Random time changed Lévy (stationary and independent in-
crement) processes are extensively used to model finance data exhibiting stochastic
volatility, see Schoutens (2003). GID laws are the increments of exponential/ gamma
time changed Lévy processes. Here we have another distribution for the random time
change. Thus the results in this note will play a useful role in stochastic modelling of
data consisting of both positive, negative and discrete values.

2. Divisibility properties of T2GL laws

Introducing a scale parameter we have the LT of the ML(α, λ) as

1

1 + λsα
, α ∈ (0, 1], λ > 0.

The corresponding T2GL(α, λ) laws have CF

1

1 + 2 cos(πα2 ) λ|t|α + λ2|t|2α
, α ∈ (0, 1], λ > 0.

It is known (Pillai (1990)) that ML(α) law is normally attracted to stable(α) laws.
Let us see whether T2GL law has any such property. Let Sn = X1 + · · · +Xn where
Xi; i = 1 · · · , n are independent and identically distributed (i.i.d.) T2GL(α, λ) r.v.s.
Then the CF of n−1/αSn is

{
1 +

1

n

[
2λ cos

(πα
2

)
|t|α +

λ2

n
|t|2α

]}−n

.

We know that as n → ∞, (1 + 1
nx)

−n → exp(−x) uniformly in x and here

2λ cos
(
πα
2

)
|t|α + λ2

n |t|2α → 2λ cos
(
πα
2

)
|t|α. Hence

{
1 +

1

n

[
2λ cos

(πα
2

)
|t|α +

λ2

n
|t|2α

]}−n

→ e−[2λ cos(πα

2 )|t|
α]

proving

Proposition 2.1. T2GL(α, λ) law is normally attracted to stable(α) law.
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Remark 1. This also follows from the facts (i) that ML(α) laws are normally attracted
to stable(α) laws and (ii) that if X1 and X2 are independent r.v.s normally attracted
to stable(α) so is X1 −X2.

That ML laws are GID is used in developing certain AR(1) and p-thinning models,
see Sandhya, et al. (2018) for a review on this. Random time changed Lévy processes
are used to model finance data exhibiting stochastic volatility, see Schoutens (2003).
Since GID laws are the increments of exponential/ gamma time changed Lévy pro-
cesses, GID laws can also be used to model exponential/ gamma volatility. So one may
be interested to know whether T2GL laws are GID. This is addressed in Proposition
2.6. In this attempt we also get another distribution for the random time change. A
CF ϕ is GID if for every p ∈ (0, 1) there is a CF ξp such that

ϕ(t) =
pξp(t)

1− (1− p)ξp(t)
=⇒ ξp(t) =

ϕ(t)

p+ qϕ(t)
, q = 1− p.

Equivalently, it is enough to check whether or not ϕ(t)
p+qϕ(t) is a CF for every p ∈ (0, 1).

Taking ϕ(t) =
(
1 + 2 cos

(
πα
2

)
λ|t|α + λ2|t|2α

)−1
, α ∈ (0, 1], λ > 0, we get,

ξp(t) =
1

1 + 2 cos
(
πα
2

)
pλ|t|α + pλ2|t|2α

.

If ξp is a CF for every p ∈ (0, 1), then ϕ is GID. To check whether ξp is a CF
we proceed as follows. Consider the function ψ(s) = λ1s

α1 + λ2s
α2 , s ≥ 0, λi >

0, 0 < αi ≤ 1, i = 1, 2. This function ψ is non-negative, ψ(0) = 0 and has completely
monotone (CM) derivative, since both the terms have CM derivatives. This is because
when we differentiate them the terms in the sum ψ change their signs simultaneously,
guaranteeing that ψ has CM derivative. Since 1/(1 + s) is CM, by the criterion 2 in
Feller, 1971, p.441, we get that

1

1 + λ1sα1 + λ2sα2
, s ≥ 0, λi > 0, 0 < αi ≤ 1, i = 1, 2,

is CM. Since this function when evaluated at s = 0 equals one, we have

Lemma 2.2. 1/(1 + λ1s
α1 + λ2s

α2), λi > 0, 0 < αi ≤ 1, i = 1, 2, is the LT of some
probability law.

Since e−s is CM we get, by the same criterion 2 in Feller, 1971, p.441, the following
result which also follows as it is the LT of the sum of two independent stable laws.

Lemma 2.3. e−(λ1sα1+λ2sα2 ), λi > 0, 0 < αi ≤ 1, i = 1, 2, is the LT of some
probability law.

We first prove a general result and derive the CFs corresponding to the LTs in
Lemmas 2.2 and 2.3 from it. Consider a symmetric stable(α) r.v. X(λ) with scaling
parameter λ1/α, λ > 0, 0 < α ≤ 2 and let λ be a r.v. with LT ϕ. Then the CF f of
X(λ) is

f(t) = E[eitX(λ)] = Eλ[e
−λ|t|α ] = ϕ(|t|α),
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and we have

Proposition 2.4. If ϕ is a LT, then f(t) = ϕ(|t|α), 0 < α ≤ 2 is a CF.

Proposition 2.5. f1(t) = 1/(1 + λ1|t|β1 + λ2|t|β2), λi > 0, 0 < βi ≤ 2, i = 1, 2, is
the CF of some probability law.

We sketch a proof of this proposition that demonstrates a different possibility for
randomization. Consider the symmetric stable(β) random variable X(λ) with scaling
parameter λ1/β, λ > 0, 0 < β ≤ 2 and let λ be a r.v. with LT ϕ in Lemma 2.2. Then
the CF f1 of X(λ) is

f1(t) = E
[
eitX(λ)

]
= Eλ

[
e−λ|t|β

]
= ϕ(|t|β) = 1

1 + λ1|t|α1β + λ2|t|α2β
.

Since 0 < αi ≤ 1 and 0 < β ≤ 2, we have 0 < αiβ ≤ 2. Putting βi = αiβ we get the
CF f1 in Proposition 2.5.

From Lemma 2.3 it follows on similar lines that f2(t) = e−(λ1|t|β1+λ2|t|β2 ), λi >
0, 0 < βi ≤ 2, i = 1, 2, is the CF of some probability law. This can also be seen as
it is the product of two symmetric stable CFs. Since (f2)

u is a CF for every u > 0,
f2 is ID. Further, if we treat u to be a unit exponential r.v, then we get f1. This is
another way of proving Proposition 2.5.

Propositions 2.4 has interpretation in terms of randomized operational time in
Lévy processes, see Feller (1971, p. 345, 451). For instance, the Lévy process with
CF ϕ(λ1|t|α1 + λ2|t|α2) directed by the process with LT ϕ is subordinated to the
Lévy process with CF f2. In particular, the Lévy process with CF f1 is subordinated
to that with CF f2 by the directing exponential process. On the other hand,
Proposition 2.5 implies: the Lévy process with CF f1 is subordinated to that with
CF exp(−|t|β), 0 < β ≤ 2 by the directing process with LT in Lemma 2.2. These
interpretations are important as the resultant Lévy process can be derived from
different Lévy processes using different subordinators, and we have another choice to
model stochastic volatility in finance data.

From Proposition 2.5 it follows that

ξp(t) =
1

1 + 2 cos
(
πα
2

)
pλ|t|α + pλ2|t|2α

is a CF for every p ∈ (0, 1) and hence

Proposition 2.6. T2GL(α, λ) law is GID.

Calling the family of distributions with CF f1 as T2GL(α1, α2, λ1, λ2) we can see
that T2GL(α1, α2, λ1, λ2) law is also GID, which follows by a similar line of argument
as above. Since every GID law is infinitely divisible (ID), see Sandhya (1990), Sandhya
and Pillai (1999), we have

Proposition 2.7. T2GL(α1, α2, λ1, λ2) laws are GID, hence ID.
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Remark 2. Notice that the CF f2 is not stable unless α1 = α2. Hence f2 can be stable
if and only if α1 = α2 = α in which case f2(t) = e−(λ1+λ2)|t|α , λi > 0, i = 1, 2, 0 <
α ≤ 2, which is the CF of a symmetric stable(α) law. Consequently, f1 above is not a
geometrically stable CF unless α1 = α2 = α because of the one-to-one correspondence
between stable laws and geometrically stable laws.

Having obtained the more general T2GL(α1, α2, λ1, λ2) family we check whether it
is normally attracted to any stable law. The CF of T2GL(α1, α2, λ1, λ2) is f1(t) =

1
1+λ1|t|α1+λ2|t|α2

, λi > 0, 0 < αi ≤ 2, i = 1, 2 α1 ̸= α2. Let α2 > α1. Then consider

[
f1(

t

n1/α1
)

]n
=

[
1

1 + ( 1n)λ1|t|α1 + ( 1
nα2/α1

)λ2|t|α2

]n

.

Since α2 > α1 the third term in the denominator goes to zero faster than 1
n so that[

f1(
t

n1/α1
)

]n
→ e−λ1|t|α1

, as n→ ∞.

Note that if α1 > α2 similar steps lead to similar result. When α1 = α2 similar result
obviously holds as already noted. Thus we have the following result that is stronger
than Proposition 2.1.

Theorem 2.8. T2GL(α1, α2, λ1, λ2) law is normally attracted to stable(α) law where
α = min{α1, α2} with corresponding scale parameter.

Remark 3. The T2GL(α1, α2, λ1, λ2) family has four parameters and thus is more
flexible in modelling data than the T2GL law which has only one parameter.

2.1. Discrete Analogues

From Satheesh and Nair (2002) we have, if ϕ is a LT then ϕ((1 − s)), s ∈ (0, 1] is a
probability generating function (PGF). From the LT in Lemma 2.2 we note that,

P (s) = 1/ (1 + λ1(1− s)α1 + λ2(1− s)α2) , 0 < αi ≤ 1, λi > 0, i = 1, 2

is the PGF of discrete T2GL(α1, α2, λ1, λ2) law. This class of discrete laws share the
divisibility properties (GID, ID) of its continuous counterpart. Here we briefly discuss
the analogue of Theorem 2.8, since usually the notion of attraction is discussed only
for continuous laws.

Steutel and van Harn (1979) conceived the notion of domain of attraction (DA) of
discrete stable laws. Satheesh and Sandhya (2006) used a slightly different, equivalent
description of this to discuss DA and domain of partial attraction of discrete laws.
The PGF of discrete stable(α) law is R(s) = exp{−λ(1− s)α}; 0 < α ≤ 1, λ > 0. For
α = 1 we have Poison(λ) law.

Definition 2.9. A discrete law with PGF P is in the DA of a discrete stable(α) law
with PGF R if there exists constants {bn ↓ 0} such that

lim
n→∞

{P (1− bns)}n = R(1− s).
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When bn = n−1/α, we have normal attraction. Also, we have P (1 − bns) = 1/(1 +
λ1(bns)

α1 + λ2(bns)
α2), λi > 0, 0 < αi ≤ 1, i = 1, 2, when P is the PGF of discrete

T2GL(α1, α2, λ1, λ2) law. With bn = n−1/α, α = min{α1, α2} and proceeding along
the lines leading to Theorem 2.8 we get

lim
n→∞

{P (1− bns)}n = e−λsα = R(1− s) =⇒ R(s) = e−λ(1−s)α ,

λ > 0 the corresponding scale parameter, proving the proposition given below.

Proposition 2.10. Discrete T2GL(α1, α2, λ1, λ2) law is normally attracted to discrete
stable(α) law where α = min{α1, α2} with corresponding scale parameter.

3. Concluding Remarks

A sequence of r.v.s {Xn} generates an AR(1) model with coefficient α, if
Xn = αXn−1 + ϵn, n ∈ Z, for some α ∈ (0, 1) where ϵn is a sequence of i.i.d.
r.v.s and ϵn is independent of Xn for each n.

A r.v. X is in class-L if X
D
= αX + Xα, for every α ∈ (0, 1) where X and Xα are

independent and
D
= denotes equality in distribution.

Notice that the description of the AR(1) model needs the relation to be satisfied
only ”for some α ∈ (0, 1)” while for self-decomposability the relation is to be satisfied
”for every α ∈ (0, 1)”. Perhaps not noticing this lead Sebastian and Gorenflo (2016)
to claim; ”in Gaver and Lewis (1980) it is proved that only class-L distributions can
be marginal distributions of a first order auto regressive process”, while developing
their AR(1) model associated with the T2GL model. This claim is incorrect for the
following reasons; (i) Gaver and Lewis (1980) never made or proved such a statement
(ii) the statement is wrong and (iii) the AR(1) model must be stationary even to have
a connection between the two notions.

Gaver and Lewis (1980) were perhaps the first to notice the connection between
class-L distributions and the marginals of stationary AR(1) models. We quote Gaver
and Lewis (1980); ”The limitation of the theory of class-L r.v.s as it relates to the
present work (stationary AR(1) modelling) is that it requires a solution for each
0 < α < 1, · · · . This full range of α is desirable, but may not occur.” Thus they were
quite clear in distinguishing the two notions.

A r.v. X is said to be α-decomposable if X
D
= αX +Xα, for some α ∈ (0, 1) where

X and Xα are independent.

This notion of α-decomposable distributions dates back to Loève (1945). In
Loève (1977) also this was discussed as part of Complements and Details: see 16
on Page 352 and there is notational confusion. His definition Lc as the family of all
c-decomposable laws does not imply that L1 is that of self-decomposable ones. The
class of self-decomposable laws is

⋂
0≤c≤1 Lc.

Clearly, the notion of α-decomposable laws is in tune with the structure of a
stationary AR(1) model. Thus α-decomposable laws characterize the marginal distri-
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butions of a stationary AR(1) sequences with coefficient α ∈ (0, 1), see, Bouzar and
Satheesh (2008), who further discussed the integer-valued analogue of α-decomposable
laws and characterized the marginals of stationary INAR(1) models. They also gave
a variety of examples to emphasize that the property of self-decomposability is not
required to construct stationary AR(1) sequences, both in the continuous and in the
discrete cases. The examples also stress that even finite range distributions qualify
to be the marginals of stationary AR(1) sequences. See also, Satheesh and Sandhya
(2007).

In this context it is worth noticing that whether the T2GL family is self-
decomposable or at least α-decomposable for some α, is not yet ascertained.

One may consider generalized T2GL laws with LT 1/(1 +
∑k

i=1 λis
αi); 0 < αi ≤

2, λi > 0 and derive properties similar to the above.

Disclosure Statement. Authors of this paper do not have any financial or non-
financial competing interests.
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[5] Loève, M. (1945), Nouvelles classes de lois limites. Bull. Soc. Math. France, 73, 107–126.
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